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Boundary-layer separation on a sphere in a rotating flow 
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The velocity just outside the boundary layer and upstream of the separation ring 
on a sphere moving along the axis of a slightly viscous, rotating fluid is calculated 
through a least-squares approximation on the hypothesis of no upstream in- 
fluence. A reverse flow is found in the neighbourhood of the forward stagnation 
point for k = 2Qa/U > k, = 2.20 (SZ = angular velocity of fluid, U = transla- 
tional velocity of sphere, a = radius of sphere) and is accompanied by a forward- 
separation bubble, such as that observed by Maxworthy (1970) for k 2 1. 
Rotation also induces a downstream shift of the peak velocity; the estimated 
shift of the separation ring in the absence of forward separation increases with k 
to a maximum of 24", in qualitative agreement with Maxworthy's observations. 

The least-squares formulation is compared with that given by Stewartson 
(1958) for unseparated flow (Stewartson did not consider separation). Both 
formulations require truncation of an infinite set of simultaneous equations, but 
Stewartson's formulation yields a non-positive-definite matrix that may exhibit 
spurious singularities. The least-squares formulation yields a positive-definite 
matrix, albeit a t  the expense of slower convergence for fixed k, and is especially 
well suited for automatic computation. 

An ad hoc incorporation of a cylindrical wave of strength @, such that the 
maximum upstream axial velocity is @U, is considered in an appendix. It is 
found that k, decreases monotonically from 2.2 to 0 as 42 increases from 0 to 1. 

1. Introduction 
Forward separation of the axisymmetric flow past a body in a rotating liquid 

and the subsequent formation of an upstream separation bubble, as recently 
observed by Maxworthy (1970), now appears as perhaps the most challenging 
aspect of a well-known, but still controversial, problem. We attack that problem 
by calculating the peripheral velocity, with special reference to laminar boundary- 
layer separation, on a sphere moving along the axis of a slightly viscous, un- 
bounded, rotating liquid (see figure 1). The basic parameter for this flow is the 
inverse Rossby number, 

k = 2Qa/U, (1.1) 

where SZ is the angular velocity of the (undisturbed) liquid, 77 is the translational 
velocity of the sphere, and a is its radius. 
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Maxworthy reports that the flow past a sphere in a slightly viscous, rotating 
flow separates downsteam of the equator for all k (within the range of his ob- 
servations), much as in a non-rotating flow, but that the (aft) separation ring 
shifts downstream as k increases from 0 to 2 ;  he does not report quantitative 
measurements of this shift, but his photographs suggest that it is between 20 
and 30" for k = 2 .  He also reports that forward separation occurs for k 2 1 and 
leads t o  the formation of a separation bubble (forward separation may occur for 
k < 1, but, if so, the separation bubble is not prominent), for which there is no 
counterpart in a non-rotating flow. 

uv 

a 

U - - 

FIGURE 1. Sphere in rotating flow. 

We find that the principal effects of rotation on the peripheral velocity in an 
inviscid, unseparated flow are to reduce the stagnation-point acceleration and to 
shift the peak velocity downstream. The former effect implies a region of reverse 
flow, and hence a forward-sepamtion bubble, in the neighbourhood of the 
stagnation point for k > k,, where k* = 2.20 on the hypothesis of uniform 
upstream flow. The downstream shift of the peak velocity, and hence of the 
domain of unfavourable pressure gradient (in the absence of stagnation-point 
reversal), implies a downstream shift of the separation ring that increases with 
k t o  an estimated maximum of 24" (this shift could be much larger for flows with 
forward separation). 

The primary difficulty in the calculation of the inviscid, rotating flow over a 
prescribed surface is the prescription of the upstream conditions (we use upstrea/m 
to imply a distance forward of the surface that is much larger than U / Q ) .  The 
hypothesis of uniform upstream flow holds for unseparated flow over a closed 
surface (Miles 1970n) and yields Long's (1953) mode1.f This model fails for 
separated flow; in particular, it does not hold within the domain of closed stream 
surfaces and therefore is inadequate for a complete description of flow with 
forward separation. [Long's model is characterized by simple proportionality 
between the total (Stokes) stream function and the azimuthal circulation, say I?, 
and between the perturbation stream function and the product, say x, of the 
azimuthal vorticity and the cylindrical radius, r .  Inviscid flow within a domain of 

f The hypothesis of uniform upstream flow implies that the particles in the unseparated 
flow on the surface of the sphere originate on the upstream axis, and hence that the sphere 
does not rotate in the laboratory reference frame (with respect to which the basic flow is 
rotating with the angular velocity a). Maxworthy's (1970) observations reveal that the 
sphere, although unconstrained by external torques, does not rotate (so that the velocity 
just outside the boundary layer is purely meridional) for k 5 1 and rotates quite slowly, if 
a t  all, for 1 5 k 5 2. 
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closed stream surfaces under the conditions considered herein is characterized 
by F = const. and x = const. x r2 (Batchelor 1956).] 

The problem of a sphere in an inviscid rotating flow goes back to Taylor (1 922), 
but the first complete solution is due to Stewartson (1958). Stewartson provi- 
sionally adopts Long’s model but is especially concerned with the circumstances 
under which a cylindrical flow (Taylor column) might exist. He does not, however, 
consider the possibility of a forward-separation bubble (which, to be sure, hadnot 
been observed at  the time). 

Stewartson finds that the wave drag increases rapidly with k and conjectures 
that the flow cannot be uniform upstream, and that a cylindrical flow must occur, 
for sufficiently large k. His original (1958) calculations indicate that the wave 
drag is infinite for k = 5.76, but this appears to be a spurious singularity (Miles 
1969). Stewartson’s (1969) subsequent calculations yield finite (although still 
steeply rising with lc) values of the wave drag for k 6 6, and he asserts that the 
earlier difficulty is “essentially due to retaining an insufficient number of signi- 
ficant figures in the computations”. The fact remains, however, that his basic 
formulation is characterized by a non-positive-definite matrix that may exhibit 
spurious singularities for sufficiently large k ; it therefore appears desirable to 
obtain a more definitive formulation that establishes the non-existence of singular 
values of k. 

We avoid the possibility of spurious singularities by a least-squares formulation 
that is characterized by a positive-definite matrix. This formulation yields a less 
rapidly convergent sequence of approximations for fixed k than does Stewartson’s 
formulation (see appendix), but it is better suited for automatic computation, 
and we obtain definitive numerical results within the parametric range of 
interest. It also may be of interest for other problems in fluid mechanics. 

The available theory of bluff-body flows is, of course, inadequate for a complete 
description of separation even in the absence of rotation. The essential features of 
the observed flow past a, sphere in the absence of rotation (k = 0) are that: the 
peripheral velocity is qualitatively similar to that implied by potential theory 
upstream of the boundary-layer separation ring, but is quantitatively similar 
thereto only in the neighbourhood of the forward stagnation point; (laminar) 
separation occurs just upstream of the equator. For example, Page’s measure- 
ments (Rosenhead 1963, p. 423) yield 

v = I(O- 0*291403+ 0.098705- 0.02828’) (0 6 8 6 1-48), (1.2) 

where 0 is the meridional angle measured from the upstream axis; potential theory 
implies the sinusoidal distribution 

v = g(O - 0*1667e3 + 0*008305 - 0*000207 + . . .). (1.3) 

The calculated position of the separation ring is 84” on the basis of (1.2) (Tomotika 
& Imai; cited by Rosenhead 1963) and 110” on the basis of (1.3) (Scldichting 1955, 
p. 167); Page’s measured value is 83”. These discrepancies between theory and 
observation in non-rotating flows must be borne in mind in assessing the present 
attempt to explain rotation-induced effects on separation. 

33-2 
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2. Formulation of inviscid problem 
We consider (see figure 1) the uniform translation, with velocity U ,  of a sphere 

of radius a along the axis of an inviscid, unbounded, rotating flow, refer all 
lengths and velocities to a and U ,  respectively, define the spherical polar co- 
ordinates R and 6 such that R = 1 on the sphere and 8 = 0 on the upstream axis, 
and derive the velocity from a vector potential according to 

v = V x + + k + ,  9 = 9lq5(R,% (2 .1 )  

where Cpl is a unit vector in the azimuthal direction, rq5 is the Stokes stream 
function, and r = R sin 8 is the cylindrical radius. We neglect the effects of the 
downstream wake on the inviscid flow. The potential function g5 then satisfies the 
wave equation [cf. Batchelor (1967,s  7.5), in whosenotation $ = rq5, C = k$, and 

(V2 -+ k2 - r2) q5 = +k%, (2 .2 )  

q5=0 ( R = l ) ,  (2 .3 )  

q5 # m ( ~ ) + ~ ( R - l )  (R+co,O 6 8 < QT), (2 .4 )  

where q5m = +r (2 .5 )  

dH/d$ = +k2] 

the boundary Condition (the stream function vanishes on the sphere) 

and the upstream condition (no inertial waves appear in the upstream flow) 

is a particular solution of (2 .2 )  that corresponds to the assumed upstream fl0w.T 
The velocity on the sphere is given by 

~ ( 0 )  = R-lB(R$)/aR 

= aq518R (R  = 1),  

( 2 . 6 ~ )  

(2.6b) 

where (2 .6b)  follows from ( 2 . 6 ~ )  by virtue of (2 .3 ) .  
The general solution of (2 .2 )  has the asymptotic form 

45-4, - (kR)-19i?{j(6)eikR}+O(R-2) (kR+co) ,  (2 .7 )  

wheref(0) is the complex scattering amplitude of the inertial-wave field and must 
vanish identically in 0 < 8 < in- if (2 .4 )  is to be satisfied exactly. A mean-square 
measure of the error in any approximate solution that satisfies ( 2 . 3 )  is provided by 
the upstream scattering coeulficient (whichis a measure of the energy in the upstream 
wave field), 

(v-vm12sin8d8 = (2.8) 
R+m 

3. Least-squares approximation 
A particular solution of (2 .2 )  that yields uniform upstream flow and v = 0,  

i.e. q5 = v = 0 rather than only q5 = 0, on the sphere is given by [this curious 
solution is due to Taylor ( 1  922)] 

q50(8,  8 )  = $r-+k2{j2yl(kR) - y , j , ( k R ) )  sin 8, (3.1) 

t We consider a more general upstream condition in appendix B. 
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where j n  and yn are spherical Bessel functions, the argument of each of which is 
implicitly k except where it is explicitly displayed as kR. We follow the definitions 
of Antosiewicz (Abramowitz & Stegun 1964) and refer to formulas therein by the 
prefix AS. That $o satisfies (2 .3)  follows from A S 1 0 . 1 . 3 1 ;  that it satisfies 
a#,/aR= O a t R =  1followsfromAS10.1.22and10.1.31. 

The most general solution of (2 .2)  that yields uniform upstream flow and 
satisfies (2 .3 )  is given by 

W 

#(R, 0) = $o(R, 0) + k  X V,{jnyn(kR)-~nj,(kR)}Pnl(cosB), (3 .2)  

where (l-kz)'dPn(pFL)/dp = - P ~ ( Y )  (P = ~ 0 ~ 0 )  (3 .3 )  

n= 1 

is an associated Legendre function. Substituting (3 .2 )  into (2 .63 )  and invoking 
the Wronskian of j n  and yn (AS 1 0 . 1 . 6 ) ,  we obtain 

OD 

v(0) = c v , P n 1 ( C O S 0 ) .  
n= 1 

( 3 - 4 )  

We determine the V,  approximately by truncating the expansions of (3 .2)  and 
(3 .4 )  at, say, n = N ,  and minimizings withrespect to each of V,, . . , , V,. Subtracting 

= +r from (3 .2)  and truncating the expansion, we place the result in the form 

where f o ( ~ )  = - &kzh2'2'p11(p), fn(p)  = i-nkhE)P,l(p), (3 .6a ,  b )  

Sln is the Kronecker delta, and hi,2)  = j n  & iyn are spherical Hankel functions. 
Invoking the asymptotic approximation 

hg)(kR) w ( -i)n+l(kR)-leikR (kR-tco) 

in (3 .5 )  and comparing the result to (2 .7) ,  we obtain 

N 

Substituting (3 .7 )  into (2 .8 ) ,  we obtain the positive-definite, inhomogeneous 

quadratic form N N N  

~ = s 0 - 2 9  CnK+ C 2 SmnVmKC7n, ( 3 4  

(3 .9 )  

n=l  m=l  n = l  

where 

(3 .10)  

the asterisk implies complex conjugation, 

(3 .12)  
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( 3 . 1 3 ~ )  

= 0 (m - n even) (3.13 b )  

- 22-m-nm(m + l ) !n!  (meven, nodd), ( 3 . 1 3 ~ )  
- 

(m-n) (m+n+ 1)  [(&m)! ( & ? % - $ ) ! I 2  

Dmn = k2(jrnjn + Y m Y n )  = Dnmt (3.14) 

and Emn = kYjrnyn-jnyrn) = -'nrn. (3.15) 

Minimizingtheright-handsideof (3.8) withrespect toV,forn = 1 , 2 ,  ..., N ,  we 
obtain the matrix equation 

Lam, In Dnn + 4nn'mnI CK) = M L n  1, D,, + 1lm Ezml- (3.16) 

We remark that both D,, and Em, are algebraic functions of k with recur- 
rence relations that may be inferred from those for j ,  and yl,. In particular, 
D,, = ( 2 / E )  + ( 3 /k3) ,  D,, is given by AS 10.1.27, and Em,, may be calculated from 

Em,, = 0 (m = 72,) ( 3 . 1 7 ~ )  

= 1  (772 = n+ 1 )  (3.17 b )  

= (2m- l)k-lEm-l,n-Ern-z,n (m B n + 2 ) .  ( 3 . 1 7 ~ )  

k LV 
1 2 

4 
8 

20 

2 2 
4 
8 

20 
40 
60 

3 8  
20 
40 

4 8  
20 
40 

aJ 

02 

co 

03 

v, 
1.285 
1.291 
1.296 
1.299 
1.301 

1.454 
1.566 
1.651 
1.721 
1.749 
1.759 
1.777 

2.75 
3.22 
3.47 
3.73 

4.4 
5-8 
7.1 
8.2 

- v2 
0.0618 
0.0621 
0.0623 
0.0625 
0.0626 

0.3929 
0.4295 
0.4537 
0.4731 
0.4810 
0.4838 
0.4888 

1.33 
1.57 
1.70 
1,83 

2.9 
3.9 
4.8 
5.7 

v, .; 
1.00.10-4 1.100 

1.02.10-4 1.108 

- 1.099 

1.01. 1.103 
1.02. 1.106 

- 0.2750 
0.0232 0.2114 
0.0254 0.2159 
0.0270 0.2242 
0.0277 0.2276 
0.0280 0.2288 
0.0284 0.2309 

0'292 -0.76 
0.368 -0.97 
0.408 -1.08 
0'448 -1.19 

1.0 - 0.4 
1.6 - 1-2 
2.0 - 1.9 
2.5 - 2.5 

C D  
0.2539 
0.2566 
0.2583 
0.2596 
0.2606 

1.827 
2.21 1 
2.464 
2.680 
2.770 
2.803 
2.862 

14.1 
19.9 
23.4 
27.1 

61 
117 
179 
251 

& 

0.0254 
0.0155 
0.0088 
0.0039 

0.2092 
0.1360 
0.0823 
0.0381 
c).o20 1 
0.0137 
0.0043 

0.352 
0.198 
0.115 
0.024 

0.84 
0.62 
0.45 
0.11 

1.5.10-5 

TABLE 1. The convergencc of the solution to  (3.16) with increasing N. The results labelled 
'IX) are determined by a least-squares extrapolation of 8, wersus 1/N for N = 20(4)40. 

The numerical convergence of the solution of (3.16) is illustrated in table 1, 
where V,, V,, V., 6,  the stagnation-point acceleration, 

1 N  

(3.18) 
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and the wave-drag coefficient (on the hypothesis of unseparated flow), 

are tabulated. The results labelled 00 were determined by extrapolating a least- 
squares fit to V ,  versus 1/N, as determined by (3.16) for N = 20(4)40 (the error in a 
straight-line interpolation of these points is typically less than 0.01 %!). I t  
appears from these results (although we have not proved) that the Nth approxi- 
mation to  IV,l tends monotonically toward the exact result from below as N + co 
and that the convergence is highly non-uniform as Ic + co (much as in the solution 
of plane-wave diffraction by a sphere through a modal expansion). The results for 
&, 2,3 are plotted in figure 2,  those for vh and C, in figure 3. The peripheral velocity 
distributions are plotted in figure 4 (these distributions were determined for 
N = 4 and are less accurate than the preceding results). 

2.0 

1.6 

1.2 

V ,  

0.8 

0.4 

0 
0.8 1.6 2.4 

k 

FIGURE 2. The expansion coefficients Vl,2,3 of (3.4) as determined by (3.16). The parameter 
a! = -3V,/V, appears in the approximation (4.3). 

4. Boundary-layer separation 
It is evident from the results of the preceding section that rotation generally 

decreases the stagnation-point acceleration and implies the reversal of the flow 
in a finite neighbourhood of the stagnation point for k > k,, where k, = 2.20 on 
the hypotheses of uniform upstream flow and unseparated flow over the entire 
sphere. This reversed flow is necessarily accompanied by a forward separation 
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bubble such as that observed by Maxworthy (1970), albeit at values of k signi- 
ficantly smaller than 2.2. There also are one or more reversals in the outer flow 
for k > k,, where k, + 2.2 (Miles 1969; the agreement between the estimates of 
k, and k, appears to be coincidental). These outer reversals appear to imply at 
least local instability of the flow in consequence of the concomitant violation of 
Rayleigh’s criterion that the square of the circulation must be a monotonically 
increasing function of the cylindrical radius for stable flow. The theoretical model 
of $32 and 3 cannot give a valid description of the flow within the forward 
separation bubblet or other regions of closed stream surfaces and appears to be 

k 
FIGURE 3. The stagnation-point acceleration and wave-drag coefficient, as determined by 

(3.18) and (3.19). 

2.0 - 

1.5 - 

0 30 60 90 120 150 180 

e 
FIGURE 4. The peripheral velocity distributions for N = 4 (the maximum truncation error 
for k = 2 is roughly lo%, in contrast t o  the negligible truncation errors for the results 
presented in figures 2 and 3). 

t The actual flow inside the separation bubble for k > k, may be significantly affected 
by boundary-layer effects and may not be reversed. Professor Maxworthy informs me that 
his observations give no indication of a reversed flow. 
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adequate for the calculation of the flow upstream of the forward separation bubble 
if and only if this bubble is taken as the prescribed stream surface in the calcula- 
tion of the outer flow (Miles 1969; Maxworthy 1970). 

The second, general prediction of the preceding results is that rotation induces 
a downstream shift of the maximum peripheral velocity. Invoking the fact that 
the swirl implied by the inviscid solution vanishes on the sphere, we may estimate 
the corresponding shift of the separation ring, in that parametric regime in 
which forward separation does not occur, just as in a non-rotating flow with the 
same peripheral velocity, w(s). We assume laminar flow and describe the boundary 
layer by the shape parameter 

h(s) = (Ua/v)v'(s)S;(s), (4.1 1 
where aS,(s) is the momentum thickness, and s is the peripheral distance from the 
stagnation point. Invoking the simplified form of the momentum equation, as 
developed by Thwaites and Curle & Skan for two-dimensional flow and modified 
by Rott & Crabtree for axisymmetric flow (Rosenhead 1963, VI. 18 andVIII. 12), 
we obtain 

A(s) = 0.45w'(s)~-6(s)r-~(s) w5r2ds. (4.2) 
So" 

We proceed on the basis of the approximation 

w ( 8 )  = K(l-acos8)sinB (a=  - 3 K / q , O  < a < l), (4.3) 

which corresponds to N = 2 in $3 and should be qualitatively adequate for that 
parametric regime in which forward separation does not occur [it seems likely 
that forward separation increases the downstream shift of the aft separation ring, 
but neither (4.3) nor the description of the boundary layer by the shape parameter 
h is likely to be adequate for flows with forward separation]. Substituting s = 8, 
r = sin 8, the approximation (4.3), and the change of variable p = cos 8 into 
(4.2), we obtain 

A = 0 . 4 q  -p2)-4(1 -ap)-yp+a(i -2p2)l (1 -p2)3(1 -01,~)5ap. (4.4) SI 
This last result is plotted in figure 5. The value of 8 at  separation, based on Curle 
& Skan's criterion, A = - 0-09,t is plotted in the insert of figure 4; it increases 
from 103' to 127' as 01 increases from 0 to 1. The absolute values of these positions 
are not likely to be accurate (see last paragraph in s l ) ,  but it does not appear 
unreasonable to expect that the dependence on a of the relative shift implied by 
(4.4) is a t  least qualitatively correct. 

We emphasize that the results of the preceding paragraph depend on the 
inviscid flow only through the parameter a and are independent of the hypo- 
theses underlying the calculation of this parameter in § § 2  and 3. It is conceivable 

t It is curious, and perhaps more than coincidental, that the parameters a and b, 
defined by the empirical representation F(h)  = a-bh used by Thwaites (Rosenhead, 
p. 305), appear to be related according to a = ( b  - 1)/(2b - l) ,  such that F = 1, H = b - 3, 
and T = 0 at  the separation point defined by h, = - 1/(2b - 1). Choosing b = 6 [as does 
Thwaites and 8s is strongly suggested by the energy integral (Rosenhead, VI. 19)] yields 
a = 5/11 and A, = - 1/11. 
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that other hypotheses could lead to an outer velocity of the form (4.3), but in 
which V, and a could exhibit quite different dependencies on k than those given in 
93. It remains true, nevertheless, that the results of $ 3  do yield qualitative 
agreement with Maxworthy’s observations of the effects of rotation on boundary- 
layer separation in that they imply the reversal of the stagnation-point accelera- 
tion for sufficiently large k and a downstream shift of the aft separation ring with 
increasing k .  

FIGURE 5. The boundary-layer shape parameter, as defiled by (4.1) and approximated by 
(4.4), and the location of the separation ring, as determined by h = - 0.09. 

This work was partially supported by the National Science Foundation, under 
Grant SD/GA10324, and by the Office of Naval Research, under Contract 
00014-69-A-0200-6005. I am indebted to Dr C. J. R. Garratt for suggesting the 
extrapolation procedure for the V,  as N-tco  (see last paragraph in $3). 

Appendix A. Galerkin approximation 
We consider the approximate determination of V,, ..., V, in the truncated 

expansion of (3.5) by Galerkin’s method. Substituting the approximation (3.7) 
into (2.7) and invoking (2.4), we obtain 

Multiplying (A 1) through by w,(,u), m = 1, ..., N ,  where {w,(p)} is a linearly 
independent set of weighting functions, and integrating over 0 < p < 1,  we 

(A 2) 
obtain the matrix equation 

[8ml {K> = {Cmh 
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The real and imaginary parts of (A 2) comprise 2N real equations in the real and 
imaginary parts of V,, . . . , V,. In  fact, the V, must be real if the approximation of 
(3.5) is to satisfy the boundary condition (2.3); accordingly, N of these 2N 
equations are redundant [this redundancy appears to be associated with the 
fact that each of the odd and even subsets of Pnl(p) is complete in 0 < p < 11. 

The method of least squares corresponds to the choice w, = fz and the reten- 
tion of only the real part of (A 2), which then reduces to (3.16). 

Stewartson (1958) attacks the boundary-value problem posed by (2.2)-(2.4) by 
first constructing a complete set of solutions, $,/r below, that individually satisfy 
(2.4); he then applies Galerkin's method to solve a truncated approximation to 
(2.3).  Referring to equations in Stewartson's paper by the prefix S, we find that 
the perturbation stream function given by S(4.2) and S(4.3) is equivalent to 

m 

rq5 - +r2 = + 2 A^,@,(aR, 8), (A 4) 
n= 1 

m 

where $n = ( - )"-1(2k/~)'r[yn(kR)~nl(p) + C ( L / I ~ ) ~ ~ ( ~ R ) G ( P ) I  ( ~ 5 )  
s = l  

in the present notation, and 2, = - A n  in S(4.2). Comparing (A4) to (3.2) in the 
neighbourhood of R = 0, we obtain 

A^, = (27fk)3{ ( - ),-I% j ,  - $kj2 S,,}. 

[Srnn L jn Yn - L n  jrn j n I  {V,) = +k('lm '1 j 1 ~ 2  + '1m j, jd, 

w, = 2in+1k-Jjn Pnl(p) 

(A 6) 

Substituting A,, = -A, into S(4.6), we obtain 

(A 7 )  

(A 8) 

which is identical with the matrix equation obtained by choosing 

in (A 3) and taking the real part of (A 2). 
We designate the formulations represented by (3.16) and (A 7) by I and 11, 

respectively, and the corresponding square matrices by S, and S,,. The matrix 
S ,  is positive definite and an algebraic function of k, by virtue of which I is well 
suited to high-speed computation (the matrix coefficients may be calculated from 
simple recursion formulas). The matrix S,, is non-positive-definite and a trans- 
cendental function of k, in consequence of which it is less well suited to high-speed 
computation; in particular, the determinant S,,(k) may have zeros for k > k,, 
where kAr is near the smallest zero of y,(k). [E.g. the smallest zeros of S,, for N = 1 
and N = 3 are 2.8 and 4.3, respectively.] On the other hand, I1 appears to yield 
more rapid convergence (with increasing N) than I for 1 5 k << kN.  We give a 
numerical comparison of I and I1 (StewArtson 1968) for N = 8 in table 2, using as 
a basis of comparison the aforementioned extrapolation of the results given by I 
for N = 20(4)40. It is evident that I1 yields much smaller truncation errors in the 
quantities of principal interest for k < 4, even though it yields substantially 
larger values of upstream wave energy (as measured by E ) ;  however, I1 yields 
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much larger truncation errors for k = 6, presumably in consequence of the 
proximity of a zero of We also remark that I1 appears to yield upper bounds 
to the V,, in contrast to the lower bounds determined by I. 

VI 
1.296 
1.302 
1.301 

1.651 
1.781 
1.777 

2.75 
3.83 
3.73 

4.4 
10.5 
8.2 

7 
35 
15 

13 
134 
29 

- v, 
0.0623 
0.06 
0.0626 

0.454 
0.489 
0.489 

1.33 
1.89 
1.83 

2.9 
7.3 
5.7 

6 
31 
12 

11 
141 
27 

C D  

0.2583 
0.260 
0.2606 

2.464 
2.872 
2.862 

14.1 
28.8 
27.1 

61 
422 
251 

2.4.10' 
8.4.103 
1-3. lo3 
1.0.103 
2.1.105 
7.2.103 

6 

0.0088 
0.0259 
1-5.10-5 

0.082 
0.166 

- 0'004 
0.35 
1.10 
0.02 

0.84 
6.06 
0.11 

1.4 

0- 7 

2.0 

1.2 

- 

- 

TABLE 2. Comparison of the results determined by (3.16) and Stewartson's (1958, 1969) 
formulation (note that Stewartson's C D  must be doubled to be compatible with the 
normalization adopted herein). The results labelled 00 are determined by a least-squares 
extrapolation of V ,  versus 1/N for N = 20(4)40. 

Appendix B. Incorporation of cylindrical wave 
The model developed in $$ 1 and 2 fails for separated flow, but the model of an 

oseenlet (Miles 1970b) suggests that the effect of the downstream wake on the 
inviscid flow outside of that wake might be represented by a cylindrical wave of 
strength %, such that $m in $ 2  is replaced by 

$a = lir - (@/k)Jl(kY),  (B 1) 

which implies t u p  - l-%&(h) (x+-m). (B 2) 

We generalize the formulation of $ 3  to incorporate the cylindrical wave of 
(B 1) by invoking the addition theorem [Watson (1945, $ 11.5(9)) with v = $ and 
$' = in; the terms for even n vanish identically] 

Jl(kr) = c,j,(kR)P,,(p), c, = in-k-l(n+ l)-I(2n+ l)Pnl(0), (B 3a, b) 
n= 1 

which provides a representation in terms of inertial waves of finite length (cf. the 
plane-wave expansion of classical diffraction theory). 

f We emphasize that viscous effects cannot be neglected a t  sficiently large distances 
from the sphere and that (B2) is actually the leading term in the outer expansion of an 
inner approximation (see Miles 1970b). 
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Substituting (B 3) into (2.5), subtracting the result from (3.2), and truncating, 
we obtain (3.5) and (3.7) with V,  replaced by 

V,  + i@(k%g))-lcn = An + iBn, 

An = V,  - @(cnYn/Dnn) and Bn = @(cn jnlDnn)* 

(B 4) 

(B 5% b )  where 

We also obtain (3.8) with V,  and V, replaced by An + iBn and Am- iBm, respec- 
tively. Minimizing the result with respect to A,, ..., A,, we obtain 

[&mn In Dnn + Imn EmnI (An) = ik(J1n I1 I f 1 2  + 11, %n)+ [Imn DmnI P n )  (B 6) 

in place of (3.16). Substituting (B 5a) into (3.4) and truncating, we obtain 

N 

n= 1 
~ ( 0 )  = C (An + @cn + I f k i g n ) f L ( P ) ,  (B 7) 

in which the series in the cn is absolutely convergent as N -+ CO. 

The set (B 7) was solved for N = 4; the estimated (on the basis of the more 
extensive investigation for @ = 0) truncation errors are less than 12(1) % for 
k < 2(1). The principal effect of the cylindrical wave on boundary-layer separa- 
tion, wis-&is the results for @ = 0, is the reduction of k,, which decreases 
monotonically from 2.2 to 0 as @ increases from 0 to 1. This may provide a partial 
explanation of Maxworthy’s observations of separated flow for k as small as 1, but 
we emphasize that there is little or no observational support for (B 1) at this time 
[indeed, Maxworthy’s observations suggest that the hypothesis of uniform up- 
stream flow provides a good approximation to the inviscid flow upstream of the 
forward stagnation point (at the apex of the forward separation bubble) and may 
provide a useful approximation to the flow outside of that stream surface that 
comprises those fluid particles that originate on the upstream axis]. We also 
emphasize that our generalization incorporates @ as an independent parameter, 
whereas a complete model presumably would yield @ as a function of k. 
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